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1. Introduction

Recent advances in vacuum stabilization in string theory, most notably the KKLT [1] and

the large volume [2] varieties, have put stringy realizations of cosmic inflation on a much

firmer footing. Only when all moduli have been stabilized does it make sense to study

which of them might be candidates for inflation. String theory provides an abundance

of moduli fields, for example the size and shape of the extra dimensions, and thus many

potential opportunities for inflation. These include single-field models, such as ref. [3], and

multiple-field models such as the racetrack model [4], the N-flation scenario [5], or the swiss-

cheese scenario [6]. Multiple field inflation has the advantage of more easily providing some

of the nonstandard observational features that one would like for helping to discriminate

between theories. The extra degrees of freedom allow the production of isocurvature modes

(perturbations transverse to the classical trajectory) and it has become apparent [7] that

these may give rise to large nongaussianities in the cosmic microwave background (CMB)

temperature fluctuations.

One such model is the roulette scenario [8], in which the Calabi-Yau manifold (the

compactified extra dimensions of string theory) relaxes from an initial excited state towards

a minimum of its potential. The large volume compactification that is used ensures that this

minimum exists for large ranges of the microscopic parameters. In addition, unlike KKLT,

it does not require tuning the constant term in the superpotential to very small values, and

it gives a natural expansion parameter, the inverse volume 1/V, providing a controlled α′

expansion. In this particular model, the last four-cycle and corresponding axionic partner

to relax act as slow rolling scalar fields which drive the final stage of inflation.
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Specializing to a specific set of microscopic parameters, we explored the various tra-

jectories of inflation available within the context of this two-field model. The prediction of

observable parameter values were in accordance with known results from CMB and large

scale structure survey data. The influence of isocurvature perturbations, which seed inho-

mogeneieties between the species of fields driving inflation, was furthermore found to be

quite important.

In addition, recent claims of detection of nongaussianity in the WMAP CMB data,

specifically a nonvanishing nonlinearity parameter fNL [9] have sparked a large interest

in deviations from gaussianity in the spectrum of primordial fluctuations as an additional

observable that must be predicted by a successful theory of the early universe. Given that

precision measurements of fNL from experiments such as Planck will soon be available, it

is all the more important that the mechanisms governing the production and evolution of

primordial nongaussianities be well understood.

We will first provide an overview of the roulette model, followed by a discussion of

primordial nongaussianities from inflation. In section 4 we will give the main results of

our paper, which are the numerical caluclations of nongaussianities in the curvature per-

turbation. The important aspects of our calculations, which follow [10], are presented in

appendix A.

2. Roulette (Kähler moduli) inflation

The roulette model is a string theoretic inflationary scenario set in the context of a Type

IIB large volume compactification. Although there may be evolution of several Kähler

moduli, the observable part of inflation is governed by last (and lightest) one to relax.

Since the earlier-evolving moduli stabilize to deep minuma, they rapidly decouple from the

dynamics [8], before the final 60 e-foldings. The name “roulette” comes from the cyclic

shape of the potential, resembling a roulette table whose grooves are the minima toward

which the inflaton eventually relaxes (figure 1). During inflation, the F-term potential of

the large volume compactification is flat enough to allow slow-rolling over sizeable patches

of field space. Reheating, which we will not address here, occurs when the inflaton fields

oscillate at the bottom of the potential. This model was first proposed as a single-field

inflation model by Conlon and Quevedo in [3], and subsequently generalized to include

the axion as a second inflaton field by Bond, Kofman, Prokushkin and Vaudrevange in

ref. [8]. As in ref. [8], we use the large-volume compactification [2], in which the 10 space-

time dimensions of type IIB string theory are separated into a 4-dimensional noncompact

spacetime and a conformally Calabi-Yau 3-fold.

After minimizing the F-term potential in the large volume compactification with re-

spect to the axio-dilaton and all Kähler moduli but T2 = τ2 + iθ2, the potential can be

expressed as a function of τ ≡ τ2 and θ ≡ θ2. After expanding in powers of 1/V this

potential reduces to [8]:

V =
8(a2A2)

2√τe−2a2τ

3αλ2V
+

4W0a2A2τe−a2τ cos(a2θ)

V2
+ ∆V + O(1/V3), (2.1)
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Figure 1: The potential (2.1) as of function of the volume modulus τ and its axionic partner θ for

parameters in table 2. The potential is periodic in the θ direction.

where ∆V is the uplifting contribution, of order 1/V2 [3], adjusted so that that V = 0 at

its minimum. It is crucial for the naturalness of Kähler moduli inflation that ∆V depends

only very weakly upon τ2 in the case of interest, where τ1 ≫ τ2. Because of this, ∆V

is nearly constant during inflation, and the slow-roll condition on τ2 is easily satisfied.

Figure 1 shows the form of the potential.

For notational purposes we define φ1 = τ ≡ τ2 and φ2 = θ ≡ θ2. The kinetic term

takes the diagonal form:

Lkin =
1

2
K22̄δAB∂µφA∂µφB , (2.2)

with the (2, 2̄) component of the Kähler metric given by [8]

K22̄ =
3αλ2[2V + ξ + 6αλ2τ

3/2
2 ]

4(2V + ξ)2
√

τ2
. (2.3)

In the original Kähler moduli inflation model [3] the Standard Model was confined to a

D7-brane that wraps the inflaton cycle. It has recently been pointed out, however, [11] that

string loop corrections contribute to the Kähler potential in such a way that the exponential

flatness of V is destroyed. This would give large contributions to the η parameter, thereby

preventing slow roll from occuring. Ref. [11] does point out that this can be remedied by

removing the D7 brane from the inflating cycle, which has the disadvantage of complicating

the reheating process. This could proceed via a mechanism akin to the ones studied in

multiple-throat inflationary models in warped compactifications. See for instance ref. [12].
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Komatsu et al. (WMAP 1-year) [13] −58 < fNL < 134

Creminelli et al. (WMAP 3-year) [14] −36 < fNL < 100

Yadav and Wandelt (WMAP 3-year) [9] 27 < fNL < 147

Komatsu et al. (WMAP 5-year) [15] −9 < fNL < 111

Table 1: Some recent 95% CL estimates of fNL using WMAP data.

Given that we are only concerned with the inflationary phase in the present Paper, we will

take the potential (2.1) as is.

3. Inflation and nongaussianities

Slow-roll inflationary scenarios generically predict a near-scale invariant spectrum of pri-

mordial perturbations, with nearly Gaussian statistics. This is expected, since individual

quantum fluctuations can be treated as independent results and should therefore be Gaus-

sian by virtue of the central limit theorem. However, more complex field interactions, along

with interactions with gravity, which is inherently non-linear, are sure to produce at least

small deviations from Gaussianity. Due to the stochastic nature of these perturbations, it

is therefore natural to develop statistical tools to compare predictions of the theory with

CMB observations. Wick’s theorem tells us that the even moments (2n-point correlators)

of a linear field or distribution φL decompose into a sum over the permutations of two-

point correlators, whereas the odd moments vanish. The measurement of deviations from

gaussianity in a field φ(x), can therefore be made through the bispectrum (the Fourier

transform of the three-point correlator), and through the connected part of the trispec-

trum, that is, the part of the Fourier transform of the four-point correlator that cannot be

decomposed into products of the power spectrum.

It is common to parameterize the small deviations from gaussianity in terms of their

effect on the Bardeen potential Φ through fNL [17]

Φ(x) = ΦL(x) + fNL

(

Φ2
L(x) − 〈Φ2

L(x)〉
)

, (3.1)

where ΦL is a purely gaussian random field with 〈ΦL〉 = 0. Even for large fNL this

parameterisation is sufficient, given that the fluctuations Φ are order ∼ 10−5. Already

with the COBE observations it was shown that the nongaussian fraction of Φ must be less

than a few percent, fNL〈Φ2
L〉1/2 < 0.04 (see for example [13]). Subsequent measurements

have tightened this limit to the level of fNL〈Φ2
L〉1/2 < 0.003. Some recent published limits

on fNL are shown in table 1.

Some of these results [9] suggest that the CMB anisotropies exhibit measurable de-

viations from Gaussian statistics. Whether or not these detections are confirmed, future

observations such as the 9-year WMAP data and the Planck satellite data will provide

stringent bounds on the primordial bispectrum, yielding additional parameters that any

successful model of the early universe will have to match. Although nongaussianities may

be measured from the contribution of any n > 2 connected n-point function, the 3-point

correlator is the easiest to detect due to the smallness of the anisotropies.
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In the original (“local”) ansatz (3.1), fNL was taken to be a number, but by relating it

to the bispectrum one sees that more generally it could be a function of the momenta ki.

Taking the Fourier transform and writing Φ(k) = ΦL(k) + ΦNL(k), is easy to show (noting

that 〈Φ3
L〉 vanishes identically) that the lowest order nonvanishing component of fNL may

be written in terms of the bispectrum and power spectrum:1

fNL ∼ δ(k1 + k2 + k3)
〈ΦL(k1)ΦL(k2)ΦNL(k3)〉

〈ΦL(k1)ΦL(k2)〉2
. (3.2)

Due to the delta function, the wave vectors form a triangle, and the k-dependence of

eq. (3.2) can be expressed in terms of two ratios of momenta, for example k2/k1 and k3/k1,

and an overall scale. Different mechanisms produce bispectra that peak for differently

shaped triangles; for example equilateral (k1 = k2 = k3), or squeezed (k1 ≪ k2 = k3).

The latter corresponds to the prediction of local ansatz. Single-field slow-roll inflation

predicts nongaussianity of the local type [18], given that the dominant contribution to the

bispectrum should come from the superhorizon influence of small k modes which act to

“rescale” modes as they evolve toward the end of inflation. A rigorous expansion of the

action to third order in perturbation theory is given in ref. [18]. Other models such as

ghost inflation and DBI inflation predict large fNL for the equilateral configuration [19], in

which non-gaussianities are created before horizon-crossing.

Our focus will be on tracking the perturbative curvature modes from the time they

expand beyond the Hubble radius H−1, until the end of inflation. We will use the gradient

expansion approach developed by Rigopoulos, Shellard and van Tent [20, 7, 10]. The

assumptions of homogeneity and isotropy of the background FRW inflationary universe

allow the use of the “long-wavelength” approximation, in which the gradient terms of the

equations of motion may be dropped in the classical (unperturbed) equations of motion [20,

16]:

DtΠ
A + 3NHΠA = −NGABV,B, (3.3)

∂tH = −1

2
N ΠAΠA, (3.4)

where the Hubble rate is

H2 =
1

3
(Lkin + V ) , (3.5)

on scales larger than the Hubble length H−1. As a consequence, the inclusion of metric and

field perturbations simply amounts to the inclusion of gradient terms on top of the back-

ground, whose equations of motion are computed from the full field equations of motion.

The advantage of this approach is twofold: no slow-roll approximation is needed to find

and solve the equations of motion, and the resulting equations are exact (non-perturbative)

results. Quantitative computation of power spectra and bispectra was done via a pertur-

bative expansion of these gradient equations of motion. The important results of [10] that

1One must be careful with the sign of fNL, which has been a source of some confusion in the literature,

due to the sign difference between the Bardeen potential and the gravitational potential (see appendix A2

of ref. [25].) We use the WMAP convention that positive fNL corresponds to positive bispectrum of Φ.
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we made use of are presented in appendix A. Here we will only sketch the method and refer

the reader interested in the details to the appendix.

For the two-field case such as we consider here, the dynamical degrees of freedom for

the metric fluctuations can be reduced to (ζ1, ζ2, θ2) where ζ1 is the adiabatic curvature

fluctuation, ζ2 is the isocurvature fluctuation, and θ2 = ζ̇2. (θ2 is like the canonical

momentum conjugate to ζ2, and the evolution equations are first order in derivatives,

similar to Hamilton’s equations of motion. θ1 is not an independent degree of freedom, but

is constrained in terms of the others.) The formalism solves for the gradient of the three

fields, via = ∂i(ζ
1, ζ2, θ2), where a = 1, 2, 3. These quantities can furthermore be expanded

order-by-order in the cosmological perturbation, via = v
(1)
ia + v

(2)
ia + . . . . Higher order terms

are sourced by the next lowest order ones, through a master equation of the form

v̇ia(t,x) + Aab(t,x)vib(t,x) = 0. (3.6)

where the matrix Aab (see (A.18)) is determined by various slow roll parameters. The lowest

order source term from which higher order fluctuations follow is deduced by the method

of stochastic quantization. This information is encoded in a matrix X
(1)
bm , eq. (A.20). The

solutions of eq. (3.6) for v
(1)
ia and v

(2)
ia which we will need for computing the spectrum and

bispectrum can be expressed in terms of a Green’s function Gab(t− t′) which is the solution

to
d

dt
Gab(t, t

′) + A(0)
ac (t)Gcb(t, t

′) = δ(t − t′). (3.7)

where A
(0)
ac is the matrix Aac evaluated using just the homogeneous background solution.

The main technical difficulty then is in computing the Green’s function. The fluctuation

v
(1)
ia can then be computed through v

(1)
am(k, t)Gab(t, t∗+ln c)X

(1)
bm(k, t∗+ln c) (see eq. (A.31))

and similarly v
(2)
ia is given by eq. (A.37). The nongaussianity parameter fNL is determined

by v
(1)
ia and v

(2)
ia through eqs. (A.35) and (A.36) of the appendix.

For the roulette model, we must solve these equations numerically. Analytic results

have been developed (e.g., in ref. [7]) in the context of this formalism, but only within

certain constrained limits.

4. Numerical method and results

In this section we will consider a number of different parameter sets for the model, indi-

cated in table 2. Special attention will be given to the first of these, for which we illustrate

the different possibilities depending on which inflationary trajectory is followed (i.e., the

dependence on the initial conditions). In each case, we evolved the light fields (τ, θ) starting

from rest, until the end of inflation, which we took to be the point at which the slow roll

parameter ǫ grew to ǫ = 1. For each trajectory, we solved for the perturbation amplitudes

v
(m)
ia to first and second order using the gradient method described above. The power spec-

trum, scalar spectral index and nonlinearity parameter fNL thus calculated are presented

below for a variety of inflationary trajectories and parameter choices. We also discuss the

superhorizon influence of the isocurvature modes on these quantities in what follows.
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Set W0 a2 A2 λ2 α ξ V
1 300 2π/3 0.1 1 1/9

√
2 0.5 8 × 108

2 6 × 104 2π/30 0.1 1 1/9
√

2 0.5 108

3 4 × 105 π/100 0.1 1 1/9
√

2 0.5 109

4 200 π 0.1 1 1/9
√

2 0.5 106

Table 2: Parameter sets used for numerical simulations of the roulette model. The first corresponds

to parameter set 1 of [8], but with V adjusted to meet COBE normalization and was used in all

simulations unless otherwise indicated.

In contrast with the KKLT compactifiation, the large volume scenario places no strong

restrictions on the value of W0 in the effective field theory [2]. One therefore has consider-

able freedom to vary the parameters of the potential (2.1). We first verified the results of

ref. [8] as a check on methodology. We solved for the inflation trajectories starting from a

variety of initial conditions and verified that slow roll was generically obtained, as found

in section 6 of [8]. Some examples are illustrated in figure 2. Solution A, the “τ -valley”

trajectory of Conlon and Quevedo [3], effectively corresponds to single-field inflation, as

the fields start with θ already minimized. Figure 3 shows a more detailed plot of one of the

trajectories, superimposed on a contour plot of the potential. Values of ǫ were consistently

very small, with log ǫ ∼ −13 at the COBE scale. Typical values of the tensor-to-scalar

ratio produced by the fields were therefore r ≃ 3.5 × 10−12.

We focused attention on parameter set 1 of [8], with the modification that the volume

V was tuned to achieve COBE normalisation (V = 8 × 108l6s ; see table 2), i.e., the power

spectrum is Ps ∼ 4 × 10−10 on COBE scales, in order to have a realistic example. This

corresponds to an inflationary energy scale V 1/4 ≃ 1013 GeV, giving a duration of 52-

55 observable e-foldings of inflation, assuming reheating temperatures of 1010-1013 GeV.

Although a more generic method of normalization is to rescale the potential by an overall

factor, the dependence on 1/V of both terms in the potential gives a way to adjust its

magnitude without introducing additional parameters.

4.1 Isocurvature perturbations

In the case of more highly curved trajectories, the isocurvature modes were found to have

a large, positive effect on the power spectrum of adiabatic perturbations, and consequently

on the scalar spectral index ns, as recently shown in [21]. Large curvature in field space

during the course of inflation resulted in a “projection” of the isocurvature modes onto

the adiabatic direction. For some trajectories with long periods of curving, over 90% of

the power spectrum originated from the isocurvature modes. table 3 gives the proportion

of the observable curvature power spectrum at the end of inflation that results from the

influence of the isocurvature mode:

piso. ≡
∣

∣

∣

∣

Ps.f. − Pexact

Pexact

∣

∣

∣

∣

t∗=55

, (4.1)

where the subscript t∗ = 55 indicates that these quantities were evaluated at the COBE

scale, which we take to be the modes that crossed the horizon 55 e-foldings before the end
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Figure 2: Various field trajectories for different initial field configurations (red dots). The numbers

beside each curve are the number of e-foldings before slow roll breaks down and ǫ exceedes 1. The

potential here used the parameters from table 2. The labeled trajectories A through G correspond

to those listed in table 3.

of inflation. Ps.f. is the power spectrum computed with the effective single-field result

Ps.f. =
1

50π2

H4

Lkin
, (4.2)

whereas Pexact was computed using (A.34). A second result of the influence of isocurvature

modes (also discussed in ref. [21]) is a lower scalar spectral index than would be näıvely

expected from the single-field result ns.f.
s = 2η−6ǫ (= −4ǫ−6η‖ in the notation of appendix

A). The full scalar spectral index ns at COBE scales was computed by taking the derivative

of a cubic fit of ln Ps, with the power spectrum evaluated from (A.34):

n(exact)
s =

d ln Pexact

d ln k
=

d ln Pexact

dt

∣

∣

∣

∣

t∗=55

. (4.3)

Here we have used the fact that in the gauge NH = 1 with H approximately constant,

d/d ln k = d/d ln(aH)∗ ≃ H−1d/dt. Table 3 gives a comparison of both methods of com-

puting ns. Our results indicate that a significantly larger power spectrum, along with a

generically red-tilted spectrum is an expected result of curved trajectories in roulette in-

flation. This is of particular interest, given that the most recent cosmological data favor a

scalar spectral index of ns = 0.96 [15].
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Figure 3: Detailed plot of trajectory C from figure 2, superimposed on a contour plot of the

inflaton potential. Red dots represent time increments in e-foldings.

4.2 Nongaussianities in the roulette model

We now turn to the subject of nongaussianity in the roulette model. Because it gives

examples of highly curved field trajectories, one might have hoped to find observably large

levels of nongaussianity coming from the isocurvature modes. However, the numerics do

not bear out this expectation, as we now describe.

We tested the algorithm for computing fNL from superhorizon evolution of perturba-

tion modes on the two-field quadratic inflation model considered in ref. [10], verified its

results. We then analyzed the nonlinear mode evolution for a variety of roulette inflation

trajectories, for modes k corresponding to a range of horizon exit times t∗ = ln k/H∗ before

the end of inflation.

The Green’s function in eq. (3.7) was found by solving the ODE numerically in matrix

form, as a function of t. This was done once per time step t′, giving a 3 × 3 × M × M

dimensional array, where M corresponds to the number of discrete time steps sampled in

the evolution (typically around 1000). Figure 4 shows this behavior for trajectory C of

figure 2.

Inflation in the τ valley, corresponding to the effective one-field scenario of Conlon

and Quevedo [3] produced no nongaussianities originating from superhorizon interaction

between scalar modes (fNL ∼ 10−20, where the deviation from zero can be attributed to

numerical uncertainty). This is not surprising, since it is the coupling between curvature
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Trajectory a2τ a2θ f equil.
NL f sqzd.

NL N ns.f.
s nexact

s piso

A 48.4 π 0 0 86 0.965 0.965 0

B 47.6 π/2 0.0052 0.0069 62 0.992 0.976 0.70

C 47.0 π/4 0.0105 0.0132 72 1.02 0.940 0.81

D 46.3 π/8 0.0242 0.0272 77 1.02 0.920 0.91

E 38.95 0.36 0.0688 0.0698 77 1.04 0.930 0.90

F 38.93 0.40 0.0068 0.0089 103 1.002 0.948 0.72

G 38 0.38 -0.0060 -0.0060 90 0.964 0.965 0.02

Param. set a2τ a2θ f equil.
NL f sqzd.

NL N ns.f.
s nexact

s piso

2 29.5 π/32 0.0301 0.0338 77 1.055 0.909 0.93

3 28.7 π/32 0.0553 0.0590 69 1.1045 0.849 0.97

4 33.2 π/32 0.0404 0.0442 73 1.074 0.891 0.93

4 35.0 π/8 0.0060 0.0082 94 1.002 0.946 0.73

Table 3: Cosmological observables computed from chosen trajectories (see figure 2). The top part

uses parameter set 1, whereas the bottom part displays results from the other sets (see table 2).

f equil.
NL and f sqzd.

NL are the nonlinearity parameter in the equilateral and squeezed configurations,

respectively; N is the total number of e-foldings of inflation; ns.f.
s = 2η − 6ǫ is the standard single-

field scalar spectral index, whereas nexact
s is the exact index. piso is the proportion of the curvature

power spectrum originating from the isocurvature modes during superhorizon evolution, calculated

using (4.1). All observables are computed for the mode k that left the horizon 55 e-foldings before

the end of inflation, and are evaluated at the end of inflation.

and isocurvature modes that is expected to generate large bispectra.2 In more complex

inflationary trajectories with sufficient curving in field space, however, we found that values

of fNL between −0.01 and 0.02 were quite generically produced. But we did not find any

examples which produced fNL outside of the small range

|fNL| . 0.1 (4.4)

This is far below the level of sensitivity foreseen by the PLANCK experiment, for example.

Figure 5 illustrates the time-dependence of fNL at a series of wave-numbers k from

horizon exit to the end of inflation, for the representative trajectory C in figure 2), while

figure 6 shows the k-dependence of fNL after it has stopped evolving. The behaviour of

fNL shown is typical for trajectories that continued to curve during most of the period of

observable inflation: they produce slightly more pronounced values of fNL during the curved

part of the motion, but these values quickly descend to ∼ 10−2 by the end of inflation.

The two-field model studied in [10] also exhibits this behaviour: fNL descends to zero as

the trajectory straightens out at the end of inflation, resulting in a bispectrum below the

level of measurable sensitivity. Table 3 gives some computed values of f equil.
NL (where the ~ki

form an equilateral triangle) at scales k that crossed the horizon at t∗(k) = 55 e-foldings,

as well as f sqzd.
NL for squeezed triangles, with k1, k2 and k3 corresponding to t∗(k1) = 60 and

2Recall that contributions to fNL from the adiabatic fluctuations should give values of order (ns−1) [18].
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Figure 4: Green’s functions Gab(t, t
′) for t′ = 60 e-folds before the end of inflation, for roulette

inflation with the parameter set 1 and trajectory C. Only the nonzero components are labeled.

t∗(k2) = t∗(k3) = 55 respectively. Trajectories labeled A through G are shown in figure 2.

The bottom part of table 3 shows results for different parameter sets (given in table 2).

Values of fNL are taken at the end of inflation.

Features in fNL(k) can be understood as being due to curvature of the trajectory at

the time of horizon exit of particular modes. Modes that experienced more curving after

horizon exit (i.e., those which exited the horizon earlier) produced larger magnitude fNL

than those which experienced no curving. These features in the bispectrum are completely

absent in single-field inflation. One feature that was common to curved roulette trajectories

was a slightly larger bispectrum on large scales, due to the modes which left the horizon

before turning in field space occurred. This occurs because only superhorizon-scale modes

can experience growth due to the coupling between isocurvature and adiabatic modes (this

effect can also be seen in table 3, which shows the correlation between large isocurvature

contributions to the power and larger values of fNL). Smaller scales which exit the horizon

later undergo less such growth. Thus a simultaneous detection of larger fNL in the CMB

and smaller primordial non-linearity in large-scale structure may be a way to detect this

type of result, if its magnitude can be enhanced to an observable level.

One somewhat nonstandard feature of the roulette model, relative to simpler two-field

models, is the nontrivial field metric K22̄ (eq. (2.3) which multiplies the kinetic term of

the axionic direction θ. We found that it had no substantial effect on the shape, size, or
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Figure 5: Time evolution of the non-linearity parameter fNL for various modes, for trajectory C

in the equilateral configuration. The beginning of each curve corresponds to t = t∗, the time of

horizon crossing of the mode. Here, the x-axis is time until the end of inflation, in e-folds.

magnitude of the bispectrum. To test this, we tried replacing K22̄ by a constant during

inflation, and found that the spectrum of observables remained roughly unchanged.

As illustrated in table 3, the shape-dependence of the observed nongaussianities is as

expected from this type of model [19], since nongaussianities from superhorizon evolution

are larger in the squeezed configuration, whereas those generated on subhorizon scales (like

in DBI inflation) are larger in the equilateral configuration. In all cases, we find that fNL

is larger for the squeezed configuration.

5. Discussion

We have studied a model of Kähler moduli inflation built from a realistic construction of

Type IIB string theory, using the formalism developed in [20, 7, 10]. We confirm previous

results for the power spectrum and the superhorizon influence of isocurvature modes for

typical inflationary trajectories. The main new undertaking is a search for nongaussian

perturbations from highly curved trajectories. Such deviations from gaussianity can orig-

inate from the superhorizon evolution of the second-order curvature perturbation and its

interaction with isocurvature perturbations.

When the full spectrum is considered, roulette inflation predicts a smooth power spec-

trum with a slight red-tilt, in excellent agreement with estimates based on the latest WMAP

data. In addition, as shown by [21], the superhorizon influence of isocurvature modes can

come to dominate the scalar curvature power spectrum via the relation (A.15). This is the

case for inflationary trajectories with large curvature, which can be pictured as a “projec-
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Figure 6: Wave-number dependence of fNL for trajectory C. The x-axis is the time of horizon

crossing in e-folds of the corresponding mode, where t∗ = 0 is the end of inflation. In the case of

f sqzd.

NL we took t1∗ = 70 e-foldings. This is the reason that f equil.
NL (t∗ = 70) = f sqzd.

NL (t∗ = 70).

tion” of the isocurvature perturbation modes onto the adiabatic direction. This contribu-

tion, which can account for over 90% of the curvature power spectrum, must therefore be

considered in the context of these multiple-field inflationary models.

Concerning the issue of nongaussianity, we did not find examples in which fNL, pro-

duced by the mechanism considered in section 4, could be large enough to be observable

by future missions; we obtained results which did not exceed the level of fNL expected in

conventional single-field inflation models. It was hoped that trajectories with very sharp

curving in field space would have yielded larger fNL values, but two considerations could

make this difficult. First, if the trajectory relaxes to a straight, effectively single-field form

before the end of inflation, fNL damps to zero, as illustrated in figure 1 of ref. [10]. We

found trajectories with moderate curving until the end of inflation, which prevented the

total erasure of fNL. Multiple-field (“multi-brid”) hybrid inflation models such as discussed

in refs. [22, 23] use this effect to produce sizable nongaussianities. Second, large deviation

from Gaussianity from this method is correlated with large isocurvature modes being pro-

jected onto the curvature direction. If one is able to find models with large fNL, it must

be verified that the power-spectrum is not overly amplified and distorted by this effect.

This phenomenon is also seen to play an important role in nongaussianity generated by

the waterfall fields in hybrid inflation models [24].
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However, it is possible that a more complete search of the model’s parameter space

would reveal examples with larger values of fNL. In that case, running bispectra (i.e., which

depend on the magnitude of the average scale of ki, as opposed to the shape-dependence),

such as we find in the roulette model, could provide an interesting discriminator between

models. Recent developments in the detection of nongaussianity via large-scale structure,

which would probe fNL at smaller scales, promise to give additional observational handles

on such a dependence [25, 26].

It may be interesting to examine other such moduli inflation scenarios that arise once

the assumptions of a strict hierarchy of scale are relaxed (for instance, the model of ref. [27]

in which the second dynamical field is the inverse overall volume, rather than the axionic

partner). A more general study of two-field inflationary models with such an exponentially

flat potential would furthermore reveal how generic the above-mentioned behavior is.
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A. Second order quantities in the gradient expansion formalism

We present here the important results of [10], which were used in the computation of the

first- and second-order quantities that formed our main results.

Regardless of the specific inflationary model, we may write the action for a general

multifield potential V (φA) (A = 1, 2, . . .) with minimal gravitational couplings as

S =

∫

d4x
√−g

(

M2
P

2
R − 1

2
GAB∂µφA∂µφB − V (φA)

)

. (A.1)

Here R is the Ricci scalar, GAB is the metric in field space and MP = 1/
√

8πG is the reduced

Planck mass. We work in units where MP = 1. At the homogeneous level, and before

specifying a choice of spacelike slicing, the FRW metric is ds2 = −N2(t) dt2 + a2(t)d~x 2,

and varying with respect to the fields φA, a(t) and N(t) gives the equations of motion for

the scalar fields and the Friedmann equations. Here N(t) is the time-lapse function, and

a(t) is the scale factor, from which we define the Hubble parameter H(t) ≡ ȧ/(Na). To

simplify calculations during inflation, we make the coordinate choice

t ≡ ln(a), (A.2)

so N(t) = H−1 ≃ constant during inflation. Dotted fields will from now on represent

differentiation with respect to this time parameter.

Working within the long-wavelength approximation [20], we assume that the fields are

homogeneous and isotropic within the horizon. The kinetic term becomes:

Lkin =
1

2
GABΠAΠB , (A.3)

– 14 –



J
H
E
P
1
0
(
2
0
0
8
)
0
9
3

having defined the velocities

ΠA =
φ̇A

N
= Hφ̇A (A.4)

We will furthermore define covariant differentiation of a field that transforms as a

vector within field space [20]:

DBLA = ∂BLA + ΓA
BCLC (A.5)

DBLA = ∂BLA − ΓC
ABLC (A.6)

DµLA = ∂µLA + ΓA
BC∂µφBLC (A.7)

where ΓA
BC is the connection defined through the metric GAB . Henceforth, uppercase

latin indices A,B,C, . . . will represent the various fields, greek will represent spacetime

indices, and i, j, k will be spatial indices. Since we are interested in a two-field inflation

model, A,B,C, . . . = 1, 2. In the roulette model there is only one independent connection

coefficient:

Γτ
ττ = Γθ

τθ = Γτ
θτ = −Γτ

θθ =
6αλτ3/2 − V

4τ(V + 3αλτ3/2)
(A.8)

Γθ
θθ = Γθ

ττ = 0 (A.9)

For the analysis of the power spectrum and bispectrum, it will furthermore be useful

to define the orthonormal basis eA
m, where m = 1, 2:

eA
1 =

ΠA

Π
, eA

2 = ǫABeB
1 (A.10)

where Π ≡
√

ΠAΠA and ǫAB is the antisymmetric tensor. eA
1 is tangent to the classical

field trajectory, whereas eA
2 is orthogonal. Note that lower and raised indices m,n are

equivalent.

The scalar field equations of motion are given in eqs. (3.5), (3.4). We numerically

integrated them to determine the inflationary trajectories. The formalism of [20, 7, 10]

which we follow makes extensive use of the “slow roll” parameters,

ǫ =
Π2

2H2
=

Lkin

H2

ηA = −3HΠA + GAB∂BV

HΠ

η‖ = −3 − ΠA∂AV

HΠ2

η⊥ = −eA
2 V,A

HΠ

χ =
V22

3H2
+ ǫ + η‖

ξm = −Vm1

H2
+ 3(ǫ − η‖)δm1 − 3η⊥δm2

ξ‖ = ξ1, ξ⊥ = ξ2 (A.11)
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where V22 and Vm1 are defined in the orthonormal basis (A.10), such that Vmn = eA
meB

n V;AB,

with the covariant derivatives over the field metric defined above. These quantities are

nonlinear, depend on both t and ~x, and are not assumed to be small, although they are

small in the slow-roll regime. It should be noted that some of them are unintuitively named;

for example η⊥ is proportional to the slope of the potential, in the direction orthogonal

to the trajectory, rather than a curvature, and the relation of η‖ to the usual slow-roll

parameters, with respect to the adiabatic direction, is η‖ = −η + ǫ. Nevertheless we will

keep this notation for ease of comparison with ref. [7]. The ǫ parameter does agree with

the conventional ǫ (defined with respect to the slope along the adiabatic direction).

The particular choice of variables we will use to describe the fluctuations in this for-

malism are

ζA
i (t,x) = eA

1 (t,x)∂i ln a(t,x) − 1
√

2ǫ(t,x)
∂iφ

A(t,x) (A.12)

which have the property of being invariant under long-wavelength changes of time-slicing

(t, x) → (t̃, x̃) [20].This quantity can be projected onto the field basis (A.10):

ζm
i (t,x) = δm1 ∂i ln a − 1√

2ǫ
emA ∂iφ

A. (A.13)

These simplify in the gauge t = ln a, where ∂i ln a = 0. At first order, ζ1
i is the spatial

gradient of the usual curvature perturbation, whereas ζ2
i corresponds to the isocurvature

perturbation. The gradients are combined, along with their respective velocities θm
i ≡ ∂tζ

m
i ,

into a 3-component vector,

via = (ζ1
i , ζ2

i , θ2
i )

T , (A.14)

The would-be fourth component is not independent, but is determined to be

θ1
i = 2η⊥ζ2

i (A.15)

by the constraint equations [10] which may be derived from the Einstein equations and the

definition of ζm
i , noting that Dt(∂iφ

A) = Di(NΠA):

∂i ln H = ǫζ1
i , (A.16)

emA∂iφ
A = −

√
2ǫζm

i ,

eA
mDiΠA = −H

√
2ǫ

(

θm
i + η‖ζm

i − η⊥ζ2
i δm1 + (η⊥ζ1

i + ǫζ2
i )δm2

)

.

The relationship between θ1
i and ζ2

i is nothing more than the well-known “conservation”

law of the curvature perturbation. This is valid to all orders, as shown in ref. [28].

Combining these with the equations of motion (3.3)-(3.4), the full nonlinear evolution

equations may be written in the compact form:

v̇ia(t,x) + Aab(t,x)vib(t,x) = 0. (A.17)

The matrix A is a function of the parameters defined in eq. (A.11) [10]:

A =







0 −2η⊥ 0

0 0 −1

0 3χ + 2ǫ2 + 4ǫη‖ + 4(η⊥)2 + ξ‖ − 2ǫR2112 3 + ǫ + 2η‖






(A.18)

– 16 –



J
H
E
P
1
0
(
2
0
0
8
)
0
9
3

Its dominant components are A33
∼= 3 and A23 = −1. The only explicit dependence on the

curvature of the field manifold in A is the term −2ǫR2112 ≡ −2ǫeA
2 eB

1 eC
1 eD

2 RABCD, but we

found that this is negligible (∼ 10−6) in roulette inflation.

The next step is to solve this system of equations perturbatively. Eq. (A.17) can be

expanded into a hierarchy of linear perturbation equations for v
(n)
ia , each sourced by the

previous order. Since we are interested in superhorizon evolution, it is reasonable to take

the first-order perturbations to be sourced by a linear perturbation b
(1)
ia , which encodes

the effect of quantum fluctuations at short wavelengths providing the initial values for the

long-wavelength modes of interest at horizon crossing. Refs. [7, 20, 10] show that the source

term having the right properties is

b
(1)
ia =

∫

d3k

(2π)2/3
Ẇ(k)X(1)

amâ†m(k)ikie
ik·x + c.c., (A.19)

where the creation operator has the standard commutator [âm(k), â†n(k′)] = δmnδ(3)(k−k′).

Superscripts in parentheses indicate the expansion order in perturbation theory.

The matrix of linear solutions around horizon crossing Xam is the slow-roll solution of

ref. [10] in which it is argued that deviations from linearity on sub-horizon scales should

be slow-roll suppressed:

Xam = − H

4k3/2
√

ǫ







1 0

0 1

0 −χ






. (A.20)

The factor 1/
√

2ǫ comes from the definition of ζ, and the amplitude H is the result we

expect from perturbations at horizon crossing.

The window function W(t, k) is designed to source only the superhorizon modes, and

the final results must be independent of its exact shape. It is convenient to use a Heaviside

step function, W(t, k) = Θ(kR−1), that has support only on scales R = (c/aH) = (c/H)e−t

(recall we are in the gauge t = ln a) sufficiently larger than the Hubble radius, where c

should be of order a few. Given that fluctuations that are generated on sub-horizon scales

do not yet feel the effect of curvature, and therefore correspond to fluctuations in Minkowski

space, it is reasonable to expect the spectrum of fluctuations on these scales to be Gaussian.

Then

Ẇ(t, k) = δ(kR − 1) =
δ(t − t∗ − ln c)

| − ce−t+t∗ | , (A.21)

where t∗ is the time of horizon-crossing of mode k

t∗ ≡ ln k/H∗. (A.22)

Physical quantities are found to be independent of the exact value of c > 1.

The first- and second-order equations can then be written:

v̇
(1)
ia (t,x) + A

(0)
ab (t,x)v

(1)
ib (t,x) = b

(1)
ia , (A.23)

v̇
(2)
ia (t,x) + A

(0)
ab (t,x)v

(2)
ib (t,x) = −A

(1)
ab (t,x)v

(1)
ib (t,x). (A.24)
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Here, A
(1)
ab = Ā

(0)
abc(t)∂

−2∂iv
(1)
ic (note that ∂−2 is just multiplication by −k−2 in Fourier

space.) Ā is given by [10]:

























0







2ǫη⊥ − 4η‖η⊥ + 2ξ⊥

−6χ − 2ǫη‖ − 2(η‖)2 − 2(η⊥)2

−6 − 2η‖






0

0 0 0

0 Ā32







−2ǫ2 − 4ǫη‖ + 2(η‖)2 − 2(η⊥)2 − 2ξ‖

−4ǫη⊥ − 2ξ⊥

−2η⊥































(A.25)

where

Ā32 ≡ −2∂iǫR2112 +







Ā321

Ā322

Ā323






(A.26)

and

Ā321 ≡ −6ǫη‖ − 6(η⊥)2 − 3ǫχ (A.27)

−4ǫ3 − 10ǫ2η‖ − 2ǫ(η‖)2

−6ǫ(η⊥)2 + 8η‖(η⊥)2 − 3ǫξ‖

−6η⊥ξ⊥ +

√

ǫ

2
(V111 − V221)

Ā322 ≡ −12ǫη⊥ − 6η‖η⊥ (A.28)

+12η⊥χ − 6ǫ2η⊥ + 4(η⊥)3

−4ǫξ⊥ − 2η‖ξ⊥ +

√

ǫ

2
(V211 − V222)

Ā323 ≡ 6η⊥ − 2ǫη⊥ + 4η‖η⊥ − 2ξ⊥ (A.29)

The first index in Āabc stands for the row, the second for the column in (A.25), and the

third for the “depth” dimension of the array, represented here by a column vector for each

Āab. Vlmn is defined as Vlmn ≡ eA
l eB

meC
n V;ABC .

The above linear equations can then be solved with the aid of the Green’s function

which is the solution to the inhomogeneous equation

d

dt
Gab(t, t

′) + A(0)
ac (t)Gcb(t, t

′) = δ(t − t′). (A.30)

with Gab(t, t) = δab at equal times. This must be solved only once for each classical

trajectory, which we do numerically on a grid in t, t′, a and b. Once Gab(t, t
′) is known,

the step-function form of W(t, k) simplifies the integration of the first order solution,

v(1)
am(k, t) =

∫ t

−∞
dt′ Gab(t, t

′) Ẇ(k, t′)X
(1)
bm(k, t′)

= Gab(t, t∗ + ln c)X
(1)
bm(k, t∗ + ln c), (A.31)
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where we have defined the Fourier-space perturbation as:

v
(1)
ia (x, t) = ∂iv

(1)
a =

∫

d3k

(2π)2/3
v(1)
am(k, t) a†m(k) iki eik·x + c.c. (A.32)

The second order solution can be expressed, using the same method, as:

v
(2)
ia (x, t) = −

∫

dt′ Gab(t, t
′) Ābcd(t

′) v
(1)
ic (x, t′) ∂−2∂jv

(1)
jd (x, t′). (A.33)

To connect with observables one transforms the time coordinate t in the gauge of uniform

expansion time slices (NH = 1) to T (t, x) which describes uniform density slices (∂iρ =

0) [10], so a(t) → ã(T, x). Then the curvature perturbation can be expressed as the total

gradient of a scalar α̃, ζ̃1
i = ∂i ln ã ≡ ∂iα̃, which allows observable scalar correlators to

be expressed simply. Note that this result should be identical to results found using the

δN formalism, given that the perturbation δα̃ in the uniform density gauge corresponds

exactly to the perturbation in the number of e-folds δN ≡ δ ln ã = ζ [29].

The curvature power spectrum is:

P(k, t) =
k3

2π2
〈α̃α̃〉(k, t) =

k3

2π2
v
(1)
1m(k, t)v

(1)
1m(k, t). (A.34)

The scale-dependence of P comes as expected from the time-dependence of H in Xam(k, t)

(eq. (A.20)), which appears in v
(1)
1m(k, t) through eq. (A.31). It should be stressed that the

power spectrum here is complete and includes the effect of isocurvature perturbations.

The leading contribution to the bispectrum comes from the expansion to second order

in perturbation theory,

〈α̃k1
α̃k2

α̃k3
〉(2)(t) = 〈α̃(1)

k1
α̃

(1)
k2

α̃
(2)
k3

〉(t) + (k1 ↔ k3) + (k2 ↔ k3) (A.35)

= (2π)3δ3(k1 + k2 + k3) [f(k1, k2) + f(k2, k3) + f(k1, k3)]

where [10]

f(k, k′) ≡
(

1

2
v
(2)
1mn(k, k′, t) + η⊥v

(1)
2m(k, t)v

(1)
1n (k′, t)

)

v
(1)
1m(k, t)v

(1)
1n (k′, t) + k ↔ k′. (A.36)

The second term in parentheses comes from the coordinate change t → T , and the first

term is given by

v
(2)
1mn(k, k′, t) ≡ −

∫ t

−∞
dt′ G1a(t, t

′) Āabc(t
′) v

(1)
bm(k, t′) v(1)

cn (k, t′). (A.37)

Numerically, we will find that this term dominates over the η⊥v
(1)
2m(k, t)v

(1)
1n (k′, t) term in

the roulette inflation model by five orders of magnitude. These are all the ingredients

needed for evaluation of the nonlinearity parameter fNL [7],

fNL =
〈α(1)

k1
α

(1)
k2

α
(2)
k3

〉 + (k1 ↔ k3) + (k2 ↔ k3)

〈α(1)α(1)〉k1
〈α(1)α(1)〉k1

+ (k1 ↔ k3) + (k2 ↔ k3)
. (A.38)
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